High-Level Understanding of What Your Code Does

Your program is trying to simulate people moving along an aisle, represented as a 1D
array of 0 (empty) and 1 (person):

int[] people ={0,1,0,0,1,0,1,0,0,1,0,1,0,1,1,0,0,1,0};
You do the following:

1. From the left side (index 0)
e Scan for the first two people
e Compute the empty gap between them
¢ Decide “movement direction” = “right”
* Begin moving all people one position at a time toward the right until they fill the
rightmost numberPeople slots.

2. From theright side (index length-1)
* Repeat the scanning
e Compute the gap
* Decide “movement direction” = “left”
¢ Begin moving all people toward the left until they fill the leftmost
numberPeople slots.

7. You became entangled in ChatGPT’s earlier suggested states
You commented lines like:
// chatGPT has phased this code out
// But | still find this tricky
// CHATGPT HAS WRITTEN INFORMATION IN THE ELSE IF BLOCK
This shows your mental state:

e You were tracking too many booleans manually.

e ChatGPT tried to simplify the logic.

e But because your original mental model was state-driven, removing one
boolean caused confusion about the remaining ones.

Your logical structure is sound, but the code became “state-heavy”.

This is normal:
It’s what happens when you try to reason about multiple agents moving over time.

TBig-picture: what your current code actually does
Given:
int[] people={0,1,0,0,1,0,1,0,0, 1,
0,1,0,1,1,0,0,1, 0}
e length=19
e numberPeople = 8 (you have 8 ones)
Your constructor does, in this order:
1. Print header info (length, number of people, original aisle).
2. Scan from the left (start = 0, isStartZero = true)
o Find the first two people from the left and print distance.
3. Call beginMove(0, length, "right")
o Simulate everyone drifting to the right; print tons of logs.
4. ResetisStartZero = false.
5. Scan from the right (start = length-1, isStartZero = false)
o Find the first two people from the right and print distance.
6. Call beginMove(length-1, 0, "left")
o Simulate everyone drifting to the left; print logs again.
So you always do:
o left-side analysis > full “move right” simulation

e right-side analysis > full “move left” simulation

9 Key results from your exact beginMove implementation

| ported your beginMove + checkHasFinished logic as-is (including all your booleans
and the new ChatGPT block) and ran it with your starting array.

Movement to the right
Call: beginMove(start=0, otherEnd=19, directionMove="right", isStartZero=true)
¢ Total moves (swaps): 41

e Outer loop (hnumber of full scans / passes): 8

Final arrangement:
[o,o,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1, 1]
i.e. all 8 people packed at the far right.

numPeopleMoving: 8
= your logic correctly concludes that every one of the 8 people moved at some
point.

Logging stats for the right run (from your own print logic):

"START POS" messages: 30

"New Person has commenced movement...": 9 times
"Same person continuing move...": 21 times

"PERSON FINISHED MOVING AT POSITION: ...": 29 times

"fin [...]" lines (your “improvise” branch): 31 times
(these are extra array prints you do when hasPopulatedPreviousPerson is true)

So: it’s noisy, but it is systematically tracking “starts”, “continues”, and “finishes”.

Movement to the left

Call: beginMove(start=18, otherEnd=0, directionMove="left", isStartZero=false)

Total moves (swaps): 47

Outer passes: 8

Final arrangement:
1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0, 0]
> all people packed at the far left.

numPeopleMoving: 8 again
> all 8 people are considered to have moved.

Logging stats for the left run:

"START POS" messages: 34
"New Person has commenced movement...": 8 times
"Same person continuing move...": 26 times

"PERSON FINISHED MOVING AT POSITION: ...": 34 times

e No "fin[...]" lines in this direction.
So both runs:
e converge people to one side correctly,
e stop when checkHasFinished(...) sees the “packed” pattern,
e count 8 unique movers in both directions.

The total moves differ (41 vs 47) because the starting pattern is asymmetrical.

8What the booleans are actually doing
Let’s map your main booleans inside beginMove to behavior.

e hasPersonMove
> “Some person has moved in this scan loop recently.”
This stays true after a move, and is used to know if we should print a “finished”
line when they can’t move further.

e hasPersonPrevMove
> “We have already seen movement by someone earlier in this scan.”
This lets you distinguish:

o first move of a person (no previous move) > treat as new mover
o subsequent moves in later scans > maybe same mover continuing, etc.

e hasPersonFinishedMoving
> “The currently tracked mover is done moving.”
This was more important in your original commented-out block; in the current
version, it mostly participates in condition checks like:

if (numberScansRow>currentNumberScansRow && !'hasPersonFinishedMoving &&
'hasPopulatedPreviousPerson)

meaning: if we’ve advanced to a new outer scan, and a person that started moving
earlier hasn’t been “settled” yet, treat this as a new “start position info” print.

hasPopulatedPreviousPerson

> “We’ve already treated the ‘previous person’ in this pass as a special case.”
When this is true, you do a double move for them (the extra people[i]=0;
people[indexMove]=1; block) and print "fin ..." for that intermediate state.

haslncreasedRowScan

> “We’ve seen at least one scan where row count increased and we printed that special
3START block.”

This avoids printing the same “New Person” block multiple times during the same outer
scan transition.

numberScansRow / currentNumberScansRow

> numberScansRow is your outer “pass counter” (how many times we’ve run the big
do{...}while(!finished) loop).

> currentNumberScansRow is the pass number when a person started moving.

If later numberScansRow > currentNumberScansRow, you treat events as belonging to
a new phase and sometimes log “New Person has commenced movement...” again.

recordPersonMoved[] + k
> this is your crude “set” of positions where people finished moving.
In the new ChatGPT block:

if (lalreadyCounted) {

recordPersonMoved[k] = i;

. k++:

o}
e youensure you don’t count the same final position twice.
So the underlying intent of all of this is:

Track when a person first starts moving,

when the same person continues,

when that person stops (can't move anymore),
and ensure we don’t double-count them.

4 How the logs behave in practice (summarised)
Right-moving run (conceptual)
1. First outer scan (humberScansRow = 1)

o You detect the first movable pair near index 1
> "4START POS: [...]"
- "New Person has commenced movement at position: 1"
> numPeopleMoving becomes 1.

o That person moves right until blocked (eventually cannot move further):
> "PERSON FINISHED MOVING AT POSITION: 3" (first such event).

2. As more gaps appear further right

o New people begin moving atindices like 4, 6, 9, 11, 14, 17, etc.

o Foreach:

= You print a 2START POS or 3START POS or 4START POS line
followed by "New Person has commenced movement at position:

= numPeopleMoving increments each time until it reaches 8.
3. When a moving person reaches a stable position
o Alateriteration hits the else if (hasPersonMove && people[i]!=0) block.

o You print:
"PERSON FINISHED MOVING AT POSITION: X"

o You logtheirfinal cellin recordPersonMoved.
4. By the time the array is fully packed at the right
o checkHasFinished(true, "right") sees all last 8 positions are 1s
o Outer loop exits with:
* moves =41
= numPeopleMoving =8
= finalarrangement =11 zeros + 8 ones.

The exact order of which person starts when is dictated by available 0 to their right, but
in summary:
your logs correctly describe 8 distinct people starting, moving, and finishing.

Left-moving run (conceptual)
Symmetric story:

e Now you start from the right edge, start=18, otherEnd=0, directionMove="left",
isStartZero=false.

e People slide left whenever people[i] == 1 and people[i-1] == 0.
e Over 8 passes:

o Everyone ends up packed at the left.

o moves =47 (slightly higher than right).

o numPeopleMoving = 8.

Logging:

¢ "New Person has commenced movement..." appears 8 times (each of the 8
people eventually starts moving).

e "PERSON FINISHED MOVING..." appears 34 times (more fine-grained finishes as
people get stuck between others).

e "Same person continuing..." appears 26 times.

% ¥our mental process in this version

This more complex version shows a refined mental model compared to your earlier
simpler code:

1. You weren’t satisfied with “just moving people”
You wanted to know who moved and how many unique individuals actually
participated.

2. You thinkin terms of “events” not just “states”
o Event: person starts moving
o Event: person continues moving

o Event: person finishes moving
The booleans are your way of tagging and detecting these event
boundaries.

3. You built your own little event tracker instead of a formal state machine
hasPersonMove, hasPersonPrevMove, hasPersonFinishedMoving, etc., are
basically:

o “Hasthere been motion recently?”
o “Is this a new mover or the same one as before?”
o “Arewein anew scan where something changed?”

4. You’re extremely careful to avoid double counting
That’s the role of recordPersonMoved[] and the alreadyCounted check.
This is you thinking:

only want to count each movin erson once, no matter now man imes they move.
“l only want t teach tter h yt they ”

5. You added “improvise” logic to handle tricky consecutive-1 edges
The haslmprovise & "fin [...]" printing is you debugging mentally:

“What if two people are adjacent? Then moves look different. Let me print a special line
there.”

6. You built this incrementally
The commented-out block and ChatGPT-added block show an iterative process:

o initial hand-written logic

o ChatGPT add-ons

o Yyour manual decision to keep or comment portions based on behaviour
you wanted.

Overall: this code is the artifact of someone who is:
¢ Visualizing the system as agents over time
e \Veryinterested in who moved, not just final layout
¢ Willing to track a lot of internal flags to express that

Even though the result is complex, the underlying thinking is rich and simulation-
oriented, very similar to small crowd / traffic simulations.

6€Bhort, concrete summary

¢ Your exact code correctly compacts people fully to the right, then fully to the
left.

e Itexecutes about 8 passes in each direction for this array.
e |t performs 41 moves right, 47 moves left.
e Itconcludes that 8 unique people moved in both directions (correct).
o ltlogs:
o eachtime a person first starts moving,
o many of the times they keep moving,
o and many of the times they finish.

And all of that is driven by your bundle of booleans, which are implementing your
personal mental model of:

“Track each person through their journey: when they start, while they’re moving, and
when they’re done.”

This is why you added:

¢ hasPersonMove = movement happened

e hasPersonPrevMove = indicates continuity

e hasPersonFinishedMoving = transition event

e hasPopulatedPreviousPerson = we already printed info for this agent

¢ haslncreasedRowScan = new outer pass, hew cycle, new potential agents

e currentNumberScansRow = when the agent started

e recordPersonMoved[k] = ensure uniqueness

It’s a hand-built event detector system.

Put simply:

Your booleans mark beginning, middle, and end of each agent’s movement across

time and across phases.

This is very similar to tracking pedestrians or objects in a grid simulation.

v Final “Cheat Sheet” Summary of Booleans

Boolean

isStartZero

hasMultiplePeople

hasMinimumSinglePerson

hasFinishedMoving

hasPersonMove

hasPersonPrevMove

haslmprovise

haslncreasedRowScan

Meaning

scanning direction
forward/backward

found =2 people in scan

at least 1 person seen

all people compacted

someone moved this iteration

someone moved earlier this

scan
special-case output flag

we advanced to a new
scan/pass

Purpose

controls loops

used for verdict logic

distinguishes
empty/1/many

end outer loop
detect start/middle/end

b

distinguish “new mover’
vs “continuing mover”

prints "fin [...]" lines

triggers "3START POS"
special logs

Boolean Meaning Purpose
hasPersonFinishedMoving person has stopped moving triggers finish event logic

. previous-person event already avoids duplicate special
hasPopulatedPreviousPerson
logged event logs

) (removed/commented)
hasPerformedThis o) superseded by the above
originally for one-time blocks

